Galton's Fallacy and Tests of the Convergence Hypothesis

Working Paper: CEPR ID: DP820

Authors: Danny Quah

Abstract: Recent tests for the convergence hypothesis derive from regressing average growth rates on initial levels: a negative initial level coefficient is interpreted as convergence. These tests turn out to be plagued by Francis Galton's classical fallacy of regression towards the mean. Using a dynamic version of Galton's fallacy, I establish that coefficients of arbitrary signs in such regressions are consistent with an unchanging cross-section distribution of incomes. Alternative, more direct empirics used here show a tendency for divergence, rather than convergence, of cross-country incomes.

Keywords: cross-country growth; convergence; Galton's fallacy; regression towards the mean; transition matrix; stochastic kernel

JEL Codes: C10; C22; C23; E17; O40


Causal Claims Network Graph

Edges that are evidenced by causal inference methods are in orange, and the rest are in light blue.


Causal Claims

CauseEffect
initial income levels (D31)growth rates (O40)
initial income levels (D31)convergence (O47)
growth rates (O40)income disparity (D31)
initial income levels (D31)income mobility (J62)
income distributions (D31)convergence hypothesis (F62)

Back to index